機械が知識を生み出す:DeepMindとバークリー研のAI材料発見と検証

AIが新たに予測した結晶構造を、AIロボットがその実現性を試す、という画期的なプロセスが試されている。機械だけで新たな知識を生み出すことが企図されている。新材料発見が超加速するかもしれない。

機械が知識を生み出す:DeepMindとバークリー研のAI材料発見と検証
人工知能によって誘導されたロボットは、予測された40以上の新しい材料を作り出した。GNoMEからのデータは、予測された材料が安定するかどうかの追加チェックとして使用された。(クレジット:Marilyn Sargent/Berkeley Lab)

AIが新たに予測した結晶構造を、AIロボットがその実現性を試す、という画期的なプロセスが試されている。機械だけで新たな知識を生み出すことが企図されている。新材料発見が超加速するかもしれない。


Googleの人工知能研究所であるグーグル・ディープマインド(Google DeepMind)は11月末、科学誌『Nature』に掲載された論文で、結晶構造を予測するAI「GNoME(Graph Networks for Materials Exploration)」を発表した。

Scaling deep learning for materials discovery - Nature
A protocol using large-scale training of graph networks enables high-throughput discovery of novel stable structures and led to the identification of 2.2 million crystal structures, of which 381,000 are newly discovered stable materials.

Google DeepMindの研究者であり、GNoMEに関する論文の共著者Amil MerchantとEkin Dogus Cubukらは、機械学習(ML)を用いてまず候補構造を生成し、次にその安定性を測定することで、新規物質を特定した(*1)。

GNoMEは、220万個の結晶構造を作成し、そのうち38万個を将来の技術に役立つ可能性のある安定した構造であると予測した。これらの候補材料には、超伝導体、スーパーコンピューターの動力源、EVの効率を向上させる次世代バッテリーなど、未来の変革技術の開発につながる可能性のあるものが含まれている。

科学者たちはかつて、実験を通じて既知の結晶を改良したり、新しい元素の組み合わせを試したりして、新しい結晶構造を探していた。過去10年間で、28,000種類の新素材が発見されるなど、コンピュータ・シミュレーションを使用した方法が導入された。しかし、これまでの計算科学的アプローチには、実際に実現可能な材料を正確に予測することの限界があった。GNoMEは、この分野を大きく進化させ、220万種類の新しい材料を発見した。これは約800年分の知識に相当し、前例のない規模と予測精度を示している(*1)。

「例えば、超伝導体の開発によってエレクトロニクスに革命をもたらす可能性のある、グラフェンに類似した52,000もの新しい層状化合物を発見した。以前は、このような材料は1,000種類ほど確認されていた」とGoogle DeepMindは声明で書いている。「また、リチウムイオン伝導体の可能性を528個発見した。これは以前の研究の25倍であり、二次電池の性能向上に利用できる可能性がある」

水曜日に『Nature』誌に掲載された別の論文によれば、カリフォルニア大学バークレー校と米エネルギー省傘下のローレンス・バークレー国立研究所(LBNL)の研究者たちは、新素材づくりに向けた実験の一環として、この発見をすでに利用している。GNoME が予想した38万個は、LBNLの「マテリアル・プロジェクト(Materials Project)」に提供された。

An autonomous laboratory for the accelerated synthesis of novel materials - Nature
An autonomous laboratory, the A-Lab, is presented that combines computations, literature data, machine learning and active learning, which discovered and synthesized 41 novel compounds from a set of 58 targets after 17 days of operation.

LBNLが導入した自律型システム「A-Lab」は、バッテリーや太陽電池に役立つ可能性のある材料のレシピを生成し、人間の手を借りずに合成する。A-Labの要である産業用ロボット(トップ画像)もAIで制御されている。つまり、結晶構造の予想から、その検証までをAIが占めている。

「A-Labは17日間に渡り、58種類の化合物の中から41種類の化合物を作り出すことに成功した。人間の研究者が1つの新素材を作るのに、推測と実験に数ヶ月かかることもある」とLBNLのサイエンスライター Lauren Bironは書いた。LBNLとカリフォルニア大学バークレー校の研究者であるGerd Cederは、ニュースリリースで「我々は71%という驚異的な成功率を達成した。我々は、理論とデータ面をオートメーションと組み合わせることで、信じられないような結果が得られることを示してきた。マテリアル・プロジェクトにより多くのデータポイントを追加することで、より賢い選択が可能になる」と語った。

脚注

*1:GNoMEは、既知の69,000の結晶から得たデータでトレーニングされたグラフ・ニューラル・ネットワーク(GNN)を基にしている。このモデルは、原子間の結合を模倣したグラフ構造のデータを入力として使用する。この特性により、GNoMEは新しい結晶材料の発見に特に適しているという。外部ベンチマークテストを用いて測定された物質安定性予測の発見率は、最先端のモデルでは約50%だが、GNoMEは80%という非常に高い発見率を達成。さらに、GNoMEによって発見された新しい結晶構造を複数の研究室が独自に合成し、予測が正しいことを証明した。Google DeepMindは「能動学習」と呼ばれるトレーニングプロセスを採用し、GNoMEの性能を劇的に向上させた。GNoMEは新しい安定結晶構造予測データを生成し、密度汎関数理論(DFT)という計算法でテストし、その結果を高品質な学習データとして用いてGNNモデルを学習する。

*2:無機結晶構造データベース(ICSD)に従来の手法で発見された結晶約2万個が収録されている。ICSDには、X線解析による鉱物・セラミックス・金属間化合物など、元素と無機化合物の結晶構造データを収録。無機化合物の名称、分子式、三次元原子座標値、結晶学データ、トポロジー情報などが収録されている。これまで、コンピュータ・シミュレーションによるアプローチで安定な結晶の数は2万8,000個追加されたが、GNoMEにより、約38万個が追加された。ただし、GNoMEが’予想した安定な結晶の正確さはまだ確実ではない。

Read more

新たなスエズ危機に直面する米海軍[英エコノミスト]

新たなスエズ危機に直面する米海軍[英エコノミスト]

世界が繁栄するためには、船が港に到着しなければならない。マラッカ海峡やパナマ運河のような狭い航路を通過するとき、船舶は最も脆弱になる。そのため、スエズ運河への唯一の南側航路である紅海で最近急増している船舶への攻撃は、世界貿易にとって重大な脅威となっている。イランに支援されたイエメンの過激派フーシ派は、表向きはパレスチナ人を支援するために、35カ国以上につながる船舶に向けて100機以上の無人機やミサイルを発射した。彼らのキャンペーンは、黒海から南シナ海まですでに危険にさらされている航行の自由の原則に対する冒涜である。アメリカとその同盟国は、中東での紛争をエスカレートさせることなく、この問題にしっかりと対処しなければならない。 世界のコンテナ輸送量の20%、海上貿易の10%、海上ガスと石油の8~10%が紅海とスエズルートを通過している。数週間の騒乱の後、世界の5大コンテナ船会社のうち4社が紅海とスエズ航路の航海を停止し、BPは石油の出荷を一時停止した。十分な供給があるため、エネルギー価格への影響は軽微である。しかし、コンテナ会社の株価は、投資家が輸送能力の縮小を予想している

By エコノミスト(英国)
新型ジェットエンジンが超音速飛行を復活させる可能性[英エコノミスト]

新型ジェットエンジンが超音速飛行を復活させる可能性[英エコノミスト]

1960年代以来、世界中のエンジニアが回転デトネーションエンジン(RDE)と呼ばれる新しいタイプのジェット機を研究してきたが、実験段階を超えることはなかった。世界最大のジェットエンジン製造会社のひとつであるジー・エアロスペースは最近、実用版を開発中であると発表した。今年初め、米国の国防高等研究計画局は、同じく大手航空宇宙グループであるRTX傘下のレイセオンに対し、ガンビットと呼ばれるRDEを開発するために2900万ドルの契約を結んだ。 両エンジンはミサイルの推進に使用され、ロケットや既存のジェットエンジンなど、現在の推進システムの航続距離や速度の限界を克服する。しかし、もし両社が実用化に成功すれば、超音速飛行を復活させる可能性も含め、RDEは航空分野でより幅広い役割を果たすことになるかもしれない。 中央フロリダ大学の先端航空宇宙エンジンの専門家であるカリーム・アーメッドは、RDEとは「火を制御された爆発に置き換える」ものだと説明する。専門用語で言えば、ジェットエンジンは酸素と燃料の燃焼に依存しており、これは科学者が消炎と呼ぶ亜音速の反応だからだ。それに比べてデトネーシ

By エコノミスト(英国)
ビッグテックと地政学がインターネットを作り変える[英エコノミスト]

ビッグテックと地政学がインターネットを作り変える[英エコノミスト]

今月初め、イギリス、エストニア、フィンランドの海軍がバルト海で合同演習を行った際、その目的は戦闘技術を磨くことではなかった。その代わり、海底のガスやデータのパイプラインを妨害行為から守るための訓練が行われた。今回の訓練は、10月に同海域の海底ケーブルが破損した事件を受けたものだ。フィンランド大統領のサウリ・ニーニストは、このいたずらの原因とされた中国船が海底にいかりを引きずった事故について、「意図的なのか、それとも極めて稚拙な技術の結果なのか」と疑問を呈した。 海底ケーブルはかつて、インターネットの退屈な配管と見なされていた。現在、アマゾン、グーグル、メタ、マイクロソフトといったデータ経済の巨人たちは、中国と米国の緊張が世界のデジタルインフラを分断する危険性をはらんでいるにもかかわらず、データの流れをよりコントロールすることを主張している。その結果、海底ケーブルは貴重な経済的・戦略的資産へと変貌を遂げようとしている。 海底データパイプは、大陸間インターネットトラフィックのほぼ99%を運んでいる。調査会社TeleGeographyによると、現在550本の海底ケーブルが活動

By エコノミスト(英国)